|
[1 introduction] [2 overview] [3 reference] [4 GUI] IndexE3dMatrix_Print4x4 E3dMatrix_Print3x3 E3dMatrix_ToQuaternion E3dQuaternion_ToMatrix E3d_AxisAngleToMatrix E3dMatrix_Determinant3x3 E3dMatrix_Transpose3x3 E3dMatrix_Transpose4x4 E3dMatrix_Invert3x3 E3dMatrix_Adjoint3x4 E3dMatrix_Invert3x4 E3dMatrix_Mult4x4 E3dMatrix_Mult3x3_3 E3dMatrix_Mult4x4_3 E3dMatrix_Equal E3dMatrix_LoadIdentity E3dMatrix_Translate E3dMatrix_Scale E3dMatrix_Rotate2DRad E3dMatrix_RotateDeg E3dMatrix_RotateRad E3dMatrix_ToEuler E3dMatrix_Print4x4Print a Matrix's contentsSyntax Argument Description Prints the contents of the given Matrix to the standard output in column-major order. Return value None. E3dMatrix_Print3x3Print a Matrix's contentsSyntax Argument Description Prints the contents of the given Matrix to the standard output in column-major order. Return value None. E3dMatrix_ToQuaternionConvert a rotation Matrix into a quaternionSyntax Arguments Description Converts the top 3x3 portion of a Matrix into a Quaternion. The Matrix should only contain rotation (no scaling or shear). With the angle of rotation Angle, the Quaternion is of the following form: X, Y, Z: coordinates of the axis of rotation multiplied by sin(Angle*0.5) W: cos(Angle*0.5) Return value None. See also E3dQuaternion_ToMatrixConvert a Quaternion into a rotation MatrixSyntax Arguments Description Converts a Quaternion into a 3x3 rotation Matrix. With the angle of rotation Angle, the Quaternion is of the following form: X, Y, Z: coordinates of the axis of rotation multiplied by sin(Angle*0.5) W: cos(Angle*0.5) Return value None. See also E3d_AxisAngleToMatrixConvert an axis-angle rotation to a rotation MatrixSyntax Arguments Description Converts an axis-angle rotation to a 3x3 rotation Matrix. With the angle of rotation Angle, the Quaternion is of the following form: X, Y, Z: coordinates of the axis of rotation W: Angle as degrees Return value None. See also E3dMatrix_Determinant3x3Compute the determinant of a 3x3 MatrixSyntax Arguments Description Computes the determinant of the given 3x3 Matrix. Return value None. E3dMatrix_Transpose3x3Transpose a 3x3 MatrixSyntax Arguments Description Computes the transpose of a 3x3 Matrix. The transpose of a Matrix is obtained by mirroring the Matrix along the diagonal (flipping the rows and columns). Return value None. E3dMatrix_Transpose4x4Transpose a 4x4 MatrixSyntax Arguments Description Computes the transpose of a 4x4 Matrix. The transpose of a Matrix is obtained by mirroring the Matrix along the diagonal (flipping the rows and columns). Return value None. E3dMatrix_Invert3x3Invert a 3x3 MatrixSyntax Arguments Description Computes the inverse of a 3x3 Matrix. The inverse of a Matrix is a Matrix that, multiplied by the original one, yields an identity Matrix. Return value None. E3dMatrix_Adjoint3x4Compute adjoint of a 3x4 MatrixSyntax Arguments Description Computes the adjoint of a 3x4 Matrix. The adjoint of a Matrix is a similar to the inverse, but without the division by the determinant. If the Matrix represents a "rigid" transformation (no scale or shear), using the adjoint instead of the inverse is recommended, because it is faster to compute and more accurate. Return value None. See also E3dMatrix_Invert3x4Invert a 3x4 MatrixSyntax Arguments Description Computes the inverse of a 3x4 Matrix.. Return value None. E3dMatrix_Mult4x4Pre-multiply PSrcMtx with PDstMatrixSyntax Arguments Description E3dMatrix_Mult4x4 Pre-multiplies PSrcMtx with PDstMatrix and stores the result in PDstMatrix. Return value None. See also E3dMatrix_Mult3x3_3Post-multiply a 3x3 PMatrix1 with PMatrix2Syntax Arguments Description E3dMatrix_Mult4x4 Pre-multiplies PMatrix1 with PMatrix2 and stores the result in PDstMatrix. Return value None. See also E3dMatrix_Mult4x4_3Post-multiply a 4x4 PMatrix1 with PMatrix2Syntax Arguments Description E3dMatrix_Mult4x4 Pre-multiplies PMatrix1 with PMatrix2 and stores the result in PDstMatrix. Return value None. See also E3dMatrix_EqualCompare MatricesSyntax Arguments Description E3dMatrix_Equal compares LMtx1 with LMtx2 and returns TRUE if they are equal. Return value TRUE if LMtx1 and LMtx2 are equal, FALSE otherwise. See also E3dMatrix_LoadIdentityMake a matrix an identity MatrixSyntax Argument Description E3dMatrix_LoadIdentity makes PDstMatrix an identity Matrix. Return value None. See also E3dMatrix_Translate"Translate" a MatrixSyntax Arguments Description E3dMatrix_Translate performs a standard "translate" operation on the given Matrix. Return value None. See also E3dMatrix_Scale"Scale" a MatrixSyntax Arguments Description E3dMatrix_Scale performs a standard "scale" operation on the given Matrix. Return value None. See also E3dMatrix_Rotate2DRad"Rotate" a Matrix in 2DSyntax Arguments Description E3d_MatrixRotate performs a standard "rotate" operation on the Matrix in 2 dimensions. The angle is given in radians, according to the right hand rule. Return value None. See also E3dMatrix_RotateDeg"Rotate" a MatrixSyntax Arguments Description E3d_MatrixRotate performs a standard "rotate" operation on the matrix around the given axis. The angle is given in degrees according to the right hand rule, the axis can be one of the 'x', 'y' or 'z' ASCII character values. Return value None. See also E3dMatrix_RotateRad"Rotate" a MatrixSyntax Arguments Description E3d_MatrixRotate performs a standard "rotate" operation on the matrix around the given axis. The angle is given in degrees according to the right hand rule, the axis can be one of the 'x', 'y' or 'z' ASCII character values. Return value None. See also E3dMatrix_ToEulerMatrix to Euler anglesSyntax Arguments Description Analyzes a Matrix and recovers a series of 3 euler rotations, in the specified order. There are an infinite number of euler rotations that could produce the same Matrix, and some precision is lost in this conversion, so only use this function, if you really need to. Return value None. |